Icetop integration into IceCube DAQ

- IceTop schedule. phase I
- Integration into documentation, production, testing...
- Comparison of block diagrams (Icetop DD vs SDD)
 - General trigger
 - "String Processor"
- Functional differences

IceTop Phase 1.

- Engineering development for clear ice tanks
- Firmware and DAQ integration
- Air shower and tank simulation
- phase II, III ? (I'm not prepared sorry)

Documentation, Production & Testing

- Inline or parallel documents?
 - coauthor or in draft/comment phase?
 - signoff?
- Separate production run(s)?
 - High gain and low gain DOMs
 - low numbers modify after production?
- Separate testing procedures
 - Separate framework or modified
 - 80% same, 10% modified, 10% unique?

IceTop DAQ Integration: 5 David Seckel – 10/27/2002, Berkeley, CA

Differences

- Global Trigger
 - no three way communications
 - flexibility to link/add additional components
 - SPASE/AMANDA, Acoustics/Radio/Air Cherenkov
 - engineering triggers
- Trigger + Data Buffer
 - Two triggers (icetop global)
 - Vertical showers (coincident station hits)
 - Horizontal showers (single tank muons) challenging
 - DBs: probably need multiple buffers to handle bandwidth

Issues with Icetop DAQ, Mar 02

- 1. Time correction?
- 2. Hub should not touch data --- just forward it.
- 3. Why multiple data buffers?
- 4. and trigger generators?

- 1. TC is a String processor not a HUB function. Therefore there needs to be a box between Hubs and triggers.
- 2. Hub should have just one upstream destination
- 3. Total data volume 100 KBps * 320 = 320 Mbps, cf. fast ethernet 100 Mbps multiple buffers to absorb data
- 4. Verticle trigger: Station triggers max 100 Hz, -> 16 KHz of data to be searched for coincidences. data rate = 1.6 Mbps.
- 5. Horizontal trigger: Single tank triggers max 2500 Hz -> 400 KHz to be searched. data rate = 40 Mbps. May need multiple nodes for processing and/or bandwidth.

Functional differences...

- High Gain/Low Gain DOMs
- Firmware
 - two types of events
 - feature extraction
 - coincidence logic between tanks
- Communication (speed 100 KBps vs 20/40), 1 DOM per wire pair)
- Thermal control (min T or ΔT ?)
- Noise environment?

IceTop Station Schematic

IceTop DOM Strategy

IceTop Data Return Strategy

- Singles (Muons + $E_e > 30 \text{ MeV}$)
 - id (2), time (4), fit parameters(6) 12 bytes
 - 2500 Hz * 12 B = 30 KBps/DOM

• Soft Component

- Check for local coincidence (two tanks)
- R_{showers} $\sim 10-100 \text{ Hz}$
- R_{uncorrelated coincidence} $\sim 10-100 \text{ Hz}$
- Mostly simple fits 2 KBps/DOM

Waveform

- 5% simple fit fails ~ 100 Hz
- Scaled selection of minimum bias and event triggers ~ 10 Hz
- Compress and return complete waveform ~ 100 B
- 200 Hz * 100 B = 20 KBps/DOM

Thermal issues

Passive design to keep DOM MB 25C warmer than ice in tank.

Thermal time scales for non-insulated and insulated tanks